差别
这里会显示出您选择的修订版和当前版本之间的差别。
两侧同时换到之前的修订记录 前一修订版 后一修订版 | 前一修订版 | ||
public:cs:rasterization_on_larrabee [2015/09/21 20:29] – [Tile assignment] oakfire | public:cs:rasterization_on_larrabee [2021/01/06 17:31] (当前版本) – [Tile assignment] oakfire | ||
---|---|---|---|
行 281: | 行 281: | ||
As noted earlier, Larrabee uses chunked (also known as binned or tiled) rendering, where the target is divided into multiple rectangles, called tiles. The rendering commands are sorted according to the tiles they touch and stored in the corresponding bins, and then the contents of each bin are rendered separately to the corresponding tile. It's a bit complex, but it considerably improves cache coherence and parallelization. | As noted earlier, Larrabee uses chunked (also known as binned or tiled) rendering, where the target is divided into multiple rectangles, called tiles. The rendering commands are sorted according to the tiles they touch and stored in the corresponding bins, and then the contents of each bin are rendered separately to the corresponding tile. It's a bit complex, but it considerably improves cache coherence and parallelization. | ||
- | 之前提到, | + | 之前提到, |
For chunking, rasterization consists of two steps; the first identifies which tiles a triangle touches, and the second rasterizes the triangle within each tile. So it's a two-stage process, and I'm going to discuss the two stages separately. | For chunking, rasterization consists of two steps; the first identifies which tiles a triangle touches, and the second rasterizes the triangle within each tile. So it's a two-stage process, and I'm going to discuss the two stages separately. | ||
+ | |||
+ | 对于分块, | ||
Figure 12 shows an example of a triangle to be drawn to a tiled render target. The light blue area is a 256x256 render target, subdivided into four 128x128 tiles. | Figure 12 shows an example of a triangle to be drawn to a tiled render target. The light blue area is a 256x256 render target, subdivided into four 128x128 tiles. | ||
+ | |||
+ | 图例 12 显示了一个三角形将被画到一个瓦片的例子. 亮蓝色区域是 256x256 的渲染对象, | ||
{{: | {{: | ||
**Figure 12**: A triangle to be drawn to a 256x256 render target consisting of four 128x128 tiles. | **Figure 12**: A triangle to be drawn to a 256x256 render target consisting of four 128x128 tiles. | ||
+ | |||
+ | 图例 12 : 一个三角形要被画到由四个 128x128 瓦片组成的 256x256 渲染对象上. | ||
With Larrabee' | With Larrabee' | ||
+ | |||
+ | 对于 Larrabee 的分块架构, | ||
Assignment of triangles to tiles can easily be performed for relatively small triangles - say, up to a tile in size, which covers 90% of all triangles - by doing bounding box tests. For example, it would be easy with bounding box tests to find out what two tiles the triangle in Figure 12 is in. Larger triangles are currently assigned to tiles by simply walking the bounding box and testing each tile against the triangle; that doesn' | Assignment of triangles to tiles can easily be performed for relatively small triangles - say, up to a tile in size, which covers 90% of all triangles - by doing bounding box tests. For example, it would be easy with bounding box tests to find out what two tiles the triangle in Figure 12 is in. Larger triangles are currently assigned to tiles by simply walking the bounding box and testing each tile against the triangle; that doesn' | ||
+ | |||
+ | 通过使用盒包围测试能让相对小的三角形易分配到瓦片 - 所谓相对小是瓦片大小能达到覆盖三角形的90% :?:. 例如, 很容易使用盒包围测试来找出图例 12 中三角形在哪两个瓦片中. 更大的三角形的分配是移动盒包围与测定每个瓦片相对三角形位置; | ||
Large-triangle assignment to tiles is performed with scalar code, for simplicity and because it's not a significant performance factor. Let's look at how that scalar process works, because it will help us understand vectorized intra-tile rasterization later. I'll use a small triangle for the example, for simplicity and to make the figures legible, but as noted above, normally such a small triangle would be assigned to its tile or tiles using bounding box tests. | Large-triangle assignment to tiles is performed with scalar code, for simplicity and because it's not a significant performance factor. Let's look at how that scalar process works, because it will help us understand vectorized intra-tile rasterization later. I'll use a small triangle for the example, for simplicity and to make the figures legible, but as noted above, normally such a small triangle would be assigned to its tile or tiles using bounding box tests. | ||
+ | |||
+ | 大三角形的瓦片分配使用标量代码执行, | ||
Once we've set up the equation for an edge (by calculating B and C, as discussed when we looked at Figure 1), the first thing we do is calculate its value at the trivial reject corner of each tile. The trivial reject corner is the corner at which an edge's equation is most negative within a tile; the selection of the trivial reject corner for a given edge is based on its slope, as we'll see shortly. We set things up so that negative means inside in order to allow us to generate masks directly from the sign bit, so you can think of the trivial reject corner as the point in the tile that's most inside the edge. If this point isn't inside the edge, no point in the tile can be inside the edge, and therefore the whole triangle can be ignored for that tile. | Once we've set up the equation for an edge (by calculating B and C, as discussed when we looked at Figure 1), the first thing we do is calculate its value at the trivial reject corner of each tile. The trivial reject corner is the corner at which an edge's equation is most negative within a tile; the selection of the trivial reject corner for a given edge is based on its slope, as we'll see shortly. We set things up so that negative means inside in order to allow us to generate masks directly from the sign bit, so you can think of the trivial reject corner as the point in the tile that's most inside the edge. If this point isn't inside the edge, no point in the tile can be inside the edge, and therefore the whole triangle can be ignored for that tile. | ||
+ | |||
+ | 当我们建立三角形一条边的方程式后( 计算 B 和 C 系数, 如图例 1 我们所讨论的), | ||
Figure 13 shows the trivial reject test in action. Tile 0 is trivially rejected for the black edge and can be ignored, because its trivial reject corner is positive, and therefore the whole tile must be positive and must lie outside the triangle, while the other three tiles must be investigated further. You can see here how the trivial reject corner is the corner of each tile most inside the black edge; that is, the point with the most negative value in the tile. | Figure 13 shows the trivial reject test in action. Tile 0 is trivially rejected for the black edge and can be ignored, because its trivial reject corner is positive, and therefore the whole tile must be positive and must lie outside the triangle, while the other three tiles must be investigated further. You can see here how the trivial reject corner is the corner of each tile most inside the black edge; that is, the point with the most negative value in the tile. | ||
+ | |||
+ | 图例 13 显示了测定平凡拒绝角的手法. 瓦片 0 被黑边平凡拒绝, | ||
{{: | {{: | ||
**Figure 13**: The tile trivial reject test. | **Figure 13**: The tile trivial reject test. | ||
+ | |||
+ | 图例 13 瓦片平凡拒绝角的测定. | ||
Note that which corner is the trivial reject corner will vary from edge to edge, depending on slope. For example, it would be the lower left corner of each tile for the edge shown in red in Figure 14, because that's the corner that's most inside that edge. | Note that which corner is the trivial reject corner will vary from edge to edge, depending on slope. For example, it would be the lower left corner of each tile for the edge shown in red in Figure 14, because that's the corner that's most inside that edge. | ||
+ | |||
+ | 注意哪个角是平凡拒绝角会随着边变化, | ||
{{: | {{: | ||
**Figure 14**: Which corner is the trivial reject corner varies with edge slope. Here the lower left corner of each tile is the trivial reject corner. | **Figure 14**: Which corner is the trivial reject corner varies with edge slope. Here the lower left corner of each tile is the trivial reject corner. | ||
+ | |||
+ | 图例 14 : 平凡拒绝角随边斜率而改变, | ||
If you understand what we've just discussed, you're ninety percent of the way to understanding the whole Larrabee rasterizer. The trivial reject test is actually very straightforward once you understand it - it's just a matter of evaluating the sign of a simple equation at the right point - but it can take a little while to get it, so you may find it useful to re-read the previous section if you're at all uncertain or confused. | If you understand what we've just discussed, you're ninety percent of the way to understanding the whole Larrabee rasterizer. The trivial reject test is actually very straightforward once you understand it - it's just a matter of evaluating the sign of a simple equation at the right point - but it can take a little while to get it, so you may find it useful to re-read the previous section if you're at all uncertain or confused. | ||
+ | |||
+ | 如果你理解了刚才我们所讨论的, | ||
So that's the tile trivial reject test. The other tile test is the trivial accept test. For this, we take the value at the trivial reject corner (the corner we just discussed) and add the amount that the edge equation changes for a step all the way to the diagonally opposite tile corner, the tile trivial accept corner. This is the point in the tile where the edge equation is most positive; you can think of this as the point in the tile that's most outside the edge. If the trivial accept corner for an edge is negative, that whole tile is trivially accepted for that edge, and there' | So that's the tile trivial reject test. The other tile test is the trivial accept test. For this, we take the value at the trivial reject corner (the corner we just discussed) and add the amount that the edge equation changes for a step all the way to the diagonally opposite tile corner, the tile trivial accept corner. This is the point in the tile where the edge equation is most positive; you can think of this as the point in the tile that's most outside the edge. If the trivial accept corner for an edge is negative, that whole tile is trivially accepted for that edge, and there' | ||
+ | |||
+ | 这就是平凡拒绝角测验. 另一个瓦片测验是平凡接受测验. 这个测验从获取平凡拒绝角((刚讨论过的)边方程式的值转变成获取该瓦片对角的, | ||
Figure 15 shows the trivial accept test in action. Since the trivial accept corner is the corner at which the edge's equation is most positive, if this point is negative - and therefore inside the edge - all points in the tile must be inside the edge. Thus, tiles 0 and 1 are not trivially accepted for the black edge, because the equation for the black edge is positive at their trivial accept corners, but tiles 2 and 3 are trivially accepted, so rasterization of this triangle in tiles 2 and 3 can ignore the black edge entirely, saving a good bit of work. | Figure 15 shows the trivial accept test in action. Since the trivial accept corner is the corner at which the edge's equation is most positive, if this point is negative - and therefore inside the edge - all points in the tile must be inside the edge. Thus, tiles 0 and 1 are not trivially accepted for the black edge, because the equation for the black edge is positive at their trivial accept corners, but tiles 2 and 3 are trivially accepted, so rasterization of this triangle in tiles 2 and 3 can ignore the black edge entirely, saving a good bit of work. | ||
+ | |||
+ | 图例 15 显示了如何测验平方接受角. 由于平凡接受角是边方程式值最大的角, | ||
{{: | {{: | ||
**Figure 15**: The tile trivial accept test. | **Figure 15**: The tile trivial accept test. | ||
+ | |||
+ | 图例 15 : 平凡接受角测验. | ||
There' | There' | ||
+ | |||
+ | 这里有个重要的不对等. 当我们看平凡拒绝, | ||
{{: | {{: | ||
**Figure 16**: Tile 3 is trivially accepted against the black edge, but trivially rejected against the red edge. | **Figure 16**: Tile 3 is trivially accepted against the black edge, but trivially rejected against the red edge. | ||
+ | |||
+ | 图例 16 :瓦片 3 被黑边平凡接受, | ||
In Figure 17, however, tile 3 is trivially accepted by all three edges, and here we come to a key point. | In Figure 17, however, tile 3 is trivially accepted by all three edges, and here we come to a key point. | ||
+ | |||
+ | 然而在图例 17 中, 瓦片 3 被三条边平凡接受, | ||
{{: | {{: | ||
**Figure 17**: Tile 3 is trivially accepted against all three edges. | **Figure 17**: Tile 3 is trivially accepted against all three edges. | ||
+ | |||
+ | 图例 17 :瓦片 3 被三条边平凡接受. | ||
If all three edges are negative at their respective trivial accept corners, then the whole tile is inside the triangle, and no further rasterization tests are needed - and this is what I meant earlier when I said the rasterizer takes advantage of CPU smarts by not-rasterizing whenever possible. The tile-assignment code can just store a draw-whole-tile command in the bin, and the bin rendering code can simply do the equivalent of two nested loops around the shaders, resulting in a full-screen triangle rasterization speed of approximately infinity - one of my favorite performance numbers! | If all three edges are negative at their respective trivial accept corners, then the whole tile is inside the triangle, and no further rasterization tests are needed - and this is what I meant earlier when I said the rasterizer takes advantage of CPU smarts by not-rasterizing whenever possible. The tile-assignment code can just store a draw-whole-tile command in the bin, and the bin rendering code can simply do the equivalent of two nested loops around the shaders, resulting in a full-screen triangle rasterization speed of approximately infinity - one of my favorite performance numbers! | ||
- | By the way, this whole process should be familiar to 3-D programmers, | + | 如果三条边各自的平凡接受角都是负值, |
- | done in exactly the same way - although in three dimensions instead of two - with the | + | |
- | same use of sign to indicate inside and outside for trivial accept and reject. Also, structures such as octrees employ a 3-D version of the hierarchical recursion used by the Larrabee rasterizer.. | + | By the way, this whole process should be familiar to 3-D programmers, |
+ | |||
+ | 顺便一提, | ||
That completes our overview of how rasterization of large triangles for tile assignment works. As I said, this is done as a scalar evaluation in the Larrabee pipeline, so the trivial accept and reject tests for each tile are performed separately. Intra-tile rasterization, | That completes our overview of how rasterization of large triangles for tile assignment works. As I said, this is done as a scalar evaluation in the Larrabee pipeline, so the trivial accept and reject tests for each tile are performed separately. Intra-tile rasterization, | ||
- | Intra-tile rasterization: | + | 这就是完整的大三角形瓦片分配的概况. 如我所说, |
+ | |||
+ | ==== Intra-tile rasterization: | ||
Intra-tile rasterization starts at the level of a whole tile. Tile size varies, depending on factors such as pixel size, but let's assume that we're working with a 64x64 tile. Given that starting size, we calculate the edge equation values at the 16 trivial reject and trivial accept corners of the 16x16 blocks that make up the tile, just as we did at the tile level - but now we do these calculations 16 at a time. Let's start with the trivial reject test. | Intra-tile rasterization starts at the level of a whole tile. Tile size varies, depending on factors such as pixel size, but let's assume that we're working with a 64x64 tile. Given that starting size, we calculate the edge equation values at the 16 trivial reject and trivial accept corners of the 16x16 blocks that make up the tile, just as we did at the tile level - but now we do these calculations 16 at a time. Let's start with the trivial reject test. | ||
+ | |||
+ | 瓦片内光栅化先从整个瓦片级别开始. 瓦片尺寸是可变的, | ||
First, we calculate which corner of the tile is the trivial reject corner, calculate the value of the edge equation at that point, and set up a table containing the 16 steps of the edge equation from the value at the tile trivial reject corner to the trivial reject corners of the 16x16 blocks that make up the tile. The signs of the 16 values that result tell us which of the blocks are entirely outside the edge, and can therefore be ignored, and which are at least partially accepted, and therefore have to be evaluated further. | First, we calculate which corner of the tile is the trivial reject corner, calculate the value of the edge equation at that point, and set up a table containing the 16 steps of the edge equation from the value at the tile trivial reject corner to the trivial reject corners of the 16x16 blocks that make up the tile. The signs of the 16 values that result tell us which of the blocks are entirely outside the edge, and can therefore be ignored, and which are at least partially accepted, and therefore have to be evaluated further. | ||
+ | |||
+ | 首先, 我们计算哪个角是瓦片的平凡拒绝角, | ||
In Figure 18, for example, we calculate the trivial reject values for the black edge, by stepping from the value we calculated earlier at the trivial reject corner of the tile, and eliminate five of the 16x16 blocks that make up the tile. The trivial reject corner for the tile is shown in red, and the 16 trivial reject corners for the blocks are shown in white. The gray blocks are the ones that are rejected against the black edge; you can see that their trivial reject corners all have positive edge equation values. The other 11 blocks have negative values at their trivial reject corners, so they' | In Figure 18, for example, we calculate the trivial reject values for the black edge, by stepping from the value we calculated earlier at the trivial reject corner of the tile, and eliminate five of the 16x16 blocks that make up the tile. The trivial reject corner for the tile is shown in red, and the 16 trivial reject corners for the blocks are shown in white. The gray blocks are the ones that are rejected against the black edge; you can see that their trivial reject corners all have positive edge equation values. The other 11 blocks have negative values at their trivial reject corners, so they' | ||
+ | |||
+ | 图例 18 中, 举个例子, | ||
{{: | {{: | ||
**Figure 18**: The trivial reject tests for the 16 16x16 blocks in the tile. | **Figure 18**: The trivial reject tests for the 16 16x16 blocks in the tile. | ||
+ | |||
+ | 图例 18 : 瓦片 16x16 个块的平凡拒绝角的测验. | ||
To make this process clearer, in Figure 19 the arrows represent the 16 steps that are added to the black edge's tile trivial reject value. Each of these steps is just an add, and we can do 16 adds with a single vector instruction, | To make this process clearer, in Figure 19 the arrows represent the 16 steps that are added to the black edge's tile trivial reject value. Each of these steps is just an add, and we can do 16 adds with a single vector instruction, | ||
+ | |||
+ | 为了让这个过程更为清晰, | ||
{{: | {{: | ||
**Figure 19**: The steps from the tile trivial reject corner for the black edge to the trivial reject corners of the 16 16x16 blocks for the black edge. | **Figure 19**: The steps from the tile trivial reject corner for the black edge to the trivial reject corners of the 16 16x16 blocks for the black edge. | ||
+ | |||
+ | 图例 19: | ||
All this comes down to just setting up the right values, then doing one vector add and one vector compare. Remember that the edge equation is of the form Bx + Cy; therefore, to step a distance across the tile, we just set x and y to the horizontal and vertical components of that distance, evaluate the equation, and add that to the starting value. So all we're doing in Figure 19 is adding the 16 values that step the edge equation to the 16 trivial reject corners. For example, to get the edge equation value at the trivial reject corner of the upper-left block, we'd start with the value at the tile trivial reject corner, and add the amount that the edge equation changes for a step of -48 pixels in x and -48 pixels in y, as shown by the yellow arrow in Figure 20. To get the edge equation value at the trivial reject corner of the lower-left block, we'd instead add the amount that the edge equation changes for a step of -48 pixels in x only, as shown by the purple arrow. And that's really all there is to the Larrabee rasterizer - it's just a matter of stepping the edge equation values around the tile so as to determine what blocks and pixels are inside and outside the edges. | All this comes down to just setting up the right values, then doing one vector add and one vector compare. Remember that the edge equation is of the form Bx + Cy; therefore, to step a distance across the tile, we just set x and y to the horizontal and vertical components of that distance, evaluate the equation, and add that to the starting value. So all we're doing in Figure 19 is adding the 16 values that step the edge equation to the 16 trivial reject corners. For example, to get the edge equation value at the trivial reject corner of the upper-left block, we'd start with the value at the tile trivial reject corner, and add the amount that the edge equation changes for a step of -48 pixels in x and -48 pixels in y, as shown by the yellow arrow in Figure 20. To get the edge equation value at the trivial reject corner of the lower-left block, we'd instead add the amount that the edge equation changes for a step of -48 pixels in x only, as shown by the purple arrow. And that's really all there is to the Larrabee rasterizer - it's just a matter of stepping the edge equation values around the tile so as to determine what blocks and pixels are inside and outside the edges. | ||
+ | |||
+ | 所有这些归结为只要建立对应的值, | ||
{{: | {{: | ||
**Figure 20**: Examples of stepping the edge equation Bx + Cy. | **Figure 20**: Examples of stepping the edge equation Bx + Cy. | ||
+ | |||
+ | 图例 20 : | ||
Once again, we'll do trivial accept tests as well as trivial reject tests. In Figure 21 we've calculated the trivial accept values, and determined that 6 of the 16x16 blocks are trivially accepted for the black edge, and 10 of them are not trivially accepted. We know this because the values of the equation of the black edge at the trivial accept corners of the 6 pink blocks are negative, so those blocks are entirely inside the edge, while the values at the trivial accept corners of the other 10 blocks are positive, so those blocks are not entirely inside the black edge. The trivial accept values for the blocks can be calculated by stepping in any of several different ways: from the tile trivial accept corner, from the tile trivial reject corner, or from the 16 trivial reject values for the blocks. Regardless, it again takes only one vector instruction to step and one vector instruction to test the results. Combined with the results of the trivial reject test, we also know that 5 blocks are partially accepted. | Once again, we'll do trivial accept tests as well as trivial reject tests. In Figure 21 we've calculated the trivial accept values, and determined that 6 of the 16x16 blocks are trivially accepted for the black edge, and 10 of them are not trivially accepted. We know this because the values of the equation of the black edge at the trivial accept corners of the 6 pink blocks are negative, so those blocks are entirely inside the edge, while the values at the trivial accept corners of the other 10 blocks are positive, so those blocks are not entirely inside the black edge. The trivial accept values for the blocks can be calculated by stepping in any of several different ways: from the tile trivial accept corner, from the tile trivial reject corner, or from the 16 trivial reject values for the blocks. Regardless, it again takes only one vector instruction to step and one vector instruction to test the results. Combined with the results of the trivial reject test, we also know that 5 blocks are partially accepted. | ||
+ | |||
+ | 再次, 我们会像平凡拒绝角那样来做平凡接受角测验. 在图例 21 中我们已经计算出这些平凡接受角的值, | ||
{{: | {{: | ||
**Figure 21**: The trivial accept tests for the 16 16x16 blocks in the tile. | **Figure 21**: The trivial accept tests for the 16 16x16 blocks in the tile. | ||
+ | |||
+ | 图例 21 : 瓦片上 16 个 16x16 的块的平凡接受角测验. | ||
The 16 trivial reject and trivial accept values can be calculated with a total of just two vector adds per edge, using tables generated at triangle set-up time, and can be tested with two vector compares, which generate mask registers describing which blocks are trivially rejected and which are trivially accepted. We do this for the three edges, ANDing the results to create masks for the triangle, do some bit manipulation on the masks so they describe trivial and partial accept, and bit-scan through the results to find the trivially and partially accepted blocks. Each 16x16 that's trivially accepted against all three edges becomes one bin command; again, no further rasterization is needed for pixels in trivially accepted blocks. | The 16 trivial reject and trivial accept values can be calculated with a total of just two vector adds per edge, using tables generated at triangle set-up time, and can be tested with two vector compares, which generate mask registers describing which blocks are trivially rejected and which are trivially accepted. We do this for the three edges, ANDing the results to create masks for the triangle, do some bit manipulation on the masks so they describe trivial and partial accept, and bit-scan through the results to find the trivially and partially accepted blocks. Each 16x16 that's trivially accepted against all three edges becomes one bin command; again, no further rasterization is needed for pixels in trivially accepted blocks. | ||
+ | |||
+ | 通过三角形建立时生成的表, | ||
This is not obvious stuff, so let's take a moment to visualize the process. First, let's just look at one edge and trivial accept. | This is not obvious stuff, so let's take a moment to visualize the process. First, let's just look at one edge and trivial accept. | ||
+ | |||
+ | 这并不怎么明显, | ||
For a given edge, say edge number 1, we take the edge equation value at the tile trivial accept corner, broadcast it out to a vector, and vector add it to the precalculated values of the 16 steps to the trivial accept corners of the 16x16 blocks. This gives us the edge 1 values at the trivial accept corners of the 16 blocks, as shown in Figure 22. (The values shown are illustrative, | For a given edge, say edge number 1, we take the edge equation value at the tile trivial accept corner, broadcast it out to a vector, and vector add it to the precalculated values of the 16 steps to the trivial accept corners of the 16x16 blocks. This gives us the edge 1 values at the trivial accept corners of the 16 blocks, as shown in Figure 22. (The values shown are illustrative, | ||
+ | |||
+ | 对给定边, | ||
{{: | {{: | ||
**Figure 22**: Edge 1 trivial accept tests for the 16 16x16 blocks. | **Figure 22**: Edge 1 trivial accept tests for the 16 16x16 blocks. | ||
+ | |||
+ | 图 22 : 16 个 16x16 块的边 1 的平凡接受测验. | ||
The step values shown on the second line in Figure 22 are computed when the triangle is set up, using a vector multiply and a vector multiply-add. At the top level of the rasterizer - testing the 16x16 blocks that make up the tile, as shown in Figure 22 - those set-up instructions are just direct additional rasterization costs, since the top level only gets executed once per triangle, so it would be accurate to add 6 instructions to the cost of the 16x16 code we'll look at shortly in Listings 1 and 2. However, as the hierarchy is descended, the tables for the lower levels (16x16-to-4x4 and 4x4-to-mask) get reused multiple times. For example, when descending from 16x16 to 4x4 blocks, the same table is used for all partial 16x16 blocks in the tile. Likewise, there is only one table for generating masks for partial 4x4 blocks, so the additional cost per iteration in Listing 3 due to table set-up would be 2 instructions divided by the number of partial 4x4 blocks in the tile. This is generally much less than 1 instruction per 4x4 block per edge, although it gets higher the smaller the triangle is. | The step values shown on the second line in Figure 22 are computed when the triangle is set up, using a vector multiply and a vector multiply-add. At the top level of the rasterizer - testing the 16x16 blocks that make up the tile, as shown in Figure 22 - those set-up instructions are just direct additional rasterization costs, since the top level only gets executed once per triangle, so it would be accurate to add 6 instructions to the cost of the 16x16 code we'll look at shortly in Listings 1 and 2. However, as the hierarchy is descended, the tables for the lower levels (16x16-to-4x4 and 4x4-to-mask) get reused multiple times. For example, when descending from 16x16 to 4x4 blocks, the same table is used for all partial 16x16 blocks in the tile. Likewise, there is only one table for generating masks for partial 4x4 blocks, so the additional cost per iteration in Listing 3 due to table set-up would be 2 instructions divided by the number of partial 4x4 blocks in the tile. This is generally much less than 1 instruction per 4x4 block per edge, although it gets higher the smaller the triangle is. |